La Gestión organizacional: Detección de objetos, una perspectiva desde la gestión para la eficiencia económica y la automatización de decisiones
Main Article Content
Abstract
In a global context where technology and innovation are strategic pillars for economic development and organizational efficiency, this study analyzed advanced object-detection methods and their impact on organizational management. Object detection, traditionally associated with security, is presented here as a key resource that optimizes processes, reduces operational costs, and supports managerial decision-making in areas such as logistics, quality control, and risk management. The methodology employed followed the SEMMA process model (Sample, Explore, Modify, Model, Assess), consisting of five stages. Within this framework, a deep-learning approach was implemented using neural networks to evaluate accuracy and processing speed through the You Only Look Once (YOLO) algorithm, which enabled real-time detection by segmenting images into grids with simultaneous predictions of objects and classes, all executed in Jupyter Notebook using the Python programming language.
A diverse dataset was used, including security-related objects (firearms, sharp weapons) and common objects (animals, fruits, vehicles), demonstrating applicability across different economic contexts. This supports proactive management, optimal resource allocation, and increased competitiveness through dashboard-based monitoring. The results highlight the strategic value of object detection, achieving 92% accuracy and producing one analytical control dashboard as a driver of digital transformation, positioning this technique as an integrated solution capable of addressing contemporary challenges in economics and organizational management that addresses contemporary challenges in the economy and organizational management.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Derechos de autor:
La Revista Científica Espíritu Emprendedor TES conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia Creative Common Atribución -No Comercial 4.0 International (CC BY-NC 4.0), se puede copiar y redistribuir el material en cualquier medio o formato, remezclar, transformar y construir a partir del material siempre que:
- Usted no puede hacer uso del material con propósitos comerciales.
- Usted debe citar la autoría y fuente original de su publicación (revista, editorial, URL y DOI de la obra).
- Usted debe mencionar la existencia y especificaciones de esta licencia de uso.
References
Akello, B. O. (2024). Organizational information security threats: Status and challenges. World Journal of Advanced Engineering Technology and Sciences, 11(1), 148–162.
El Comercio. (2023, febrero 12). Armas ilegales se alquilan a delincuentes en Ecuador. https://www.elcomercio.com/actualidad/armas-ilegales-alquilan-delincuentes-ecuador
Thakur et al. (2024) desarrollaron un modelo basado en YOLOv8 para la detección de armas en tiempo real.
Abba S, Bizi AM, Lee JA, Bakouri S, Crespo ML. Real-time object detection, tracking, and monitoring framework for security surveillance systems. Heliyon. 2024 Jul 20;10(15):e34922. doi: http://10.1016/j.heliyon.2024.e34922
Camino, D. F. A., & Clavijo, B. P. A. (2024). La Inteligencia artificial en la investigación y redacción de textos académicos. Espí¬Ritu Emprendedor TES, 8(1), 19-34. https://doi.org/10.33970/eetes.v8.n1.2024.369
Villarreal Ger, L. O. (2024). Prototipo para la detección y clasificación de productos alimenticios mediante visión artificial en base al color. CONECTIVIDAD, 5(2), 46–62. https://doi.org/10.37431/conectividad.v5i2.129
Castillo, D., & Aguas Bucheli, L. F. (2021). USO DE LA VISION ARTIICIAL PARA LA CLASIFICACION DE RESIDUOS SOLIDOS. NEXOS CIENTÍFICOS - ISSN 2773-7489, 5(2), 48–57. Recuperado a partir de https://nexoscientificos.vidanueva.edu.ec/index.php/ojs/article/view/61
Aplicación de sensor de distancia de tiempo de vuelo para el conteo de envases Tetra Pak. (2024). Identidad Bolivariana, 8(2), 46-64. https://doi.org/10.37611/IB8ol246-64
Terven, J., & Córdova-Esparza, D.-M. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO NAS. Machine Learning and Knowledge Extraction, 5(4), 1680–1716. https://doi.org/10.3390/make5040083
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., ... & Willing, C. (2016). Jupyter Notebooks – a publishing format for reproducible computational workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas (pp. 87–90). IOS Press. DOI: 10.3233/978-1-61499-649-1-87
Josnel (2016). Revisión del estado del arte sobre el conocimiento: modelos para su gestión. Revista/Dialnet. Recuperado de Dialnet: https://dialnet.unirioja.es/descarga/articulo/6865942.pdf
Mariscal, G., Marbán, Ó., & Fernández, C. (2010). A survey of data mining and knowledge discovery process models and methodologies. The Knowledge Engineering Review, 25(2), 137–166. https://doi.org/10.1017/S0269888910000032
Chen, Q., Wang, Y., Liu, X., & Wu, J. (2020). Novel data mining methodology for healthcare applied to a new population dataset in Colombia. Diagnostics, 9(4), 192. https://doi.org/10.3390/diagnostics9040192
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. En Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788). https://doi.org/10.1109/CVPR.2016.91
Lamichhane, B. R., Srijuntongsiri, G., & Horanont, T. (2025). CNN based 2D object detection techniques: A review. Frontiers in Computer Science, 7, Article 1437664. https://doi.org/10.3389/fcomp.2025.1437664
Guevara Cruz, R. S., & Augusto Delrieux, C. (2023). Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X. CONECTIVIDAD, 4(2), 19–32. https://doi.org/10.37431/conectividad.v4i2.78
Pham, H. H., Khoudour, L., Crouzil, A., Zegers, P., & Velastin, S. A. (2022). Video based human action recognition using deep learning: A review. arXiv. https://doi.org/10.48550/arXiv.2208.03775
Sangacha-Tapia L., Luis Reyes, Jostin Maldonado, Jorge Chiquito, Karely Mallorquín y Verónica Abad (2021). Edición 2021 Saturday AI. https://saturdays.ai/2022/03/09/contenedor-de-residuos-educativo-inteligente/
Sangacha-Tapia L., González-Cañizalez, Y., & Rivas-Herrera, J. (2025). Optimización de Criterios de Búsqueda avanzada para Nuevas Tendencias en la Académica mediante Machine Learning. Revista Científica Zambos, 4(2), 197-211. https://doi.org/10.69484/rcz/v4/n2/114

