Forecast of financial insolvency through multiple discriminant analysis for the automotive sector of Tungurahua
Main Article Content
Abstract
The main objective of the present investigation was to evaluate the financial performance that allowed projecting financial insolvency through multiple discriminant analysis for the automotive sector of Tungurahua, the results were distributed in zone: healthy area, gray area (uncertainty), bankruptcy area. There are 3 proposed objectives: 1. Determine the main components of the multiple discriminant analysis, 2. Diagnose the financial situation of the automotive sector and 3. Adapt the variables of the insolvency risk model. A methodology based on the combination of descriptive and predictive research with a quantitative approach through the use of indicators has been developed. The population was made up of 29 companies in the sector, the selected sample belongs to the companies regulated by the SUPERCIAS, which are 5 in total. For the quantitative analysis, 5 indicators obtained from the financial statements available with free access on the SUPERCIAS website in order to build the equation. The forecast was made using second order polynomial regression, the main results obtained determined that only 1 company is in a healthy area, despite the COVID-19 pandemic. The main conclusion was that companies in the automotive sector of Tungurahua need the use of practical financial tools, it is through Altman's Z model that deepens the use of financial ratios in administrative management for this, the analysis should be guided and continuous decision making based on real and objective financial reasons in order to mitigate or reduce exposure to the risks and challenges of the internal and external environment that the industry faces today.
Downloads
Article Details
Derechos de autor:
La Revista Científica Espíritu Emprendedor TES conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia Creative Common Atribución -No Comercial 4.0 International (CC BY-NC 4.0), se puede copiar y redistribuir el material en cualquier medio o formato, remezclar, transformar y construir a partir del material siempre que:
- Usted no puede hacer uso del material con propósitos comerciales.
- Usted debe citar la autoría y fuente original de su publicación (revista, editorial, URL y DOI de la obra).
- Usted debe mencionar la existencia y especificaciones de esta licencia de uso.
References
Asociación de Empresas Automotrices del Ecuador. (2021). Sector automotriz en cifras octubre 2021. Obtenido de https://www.aeade.net/wp-content/uploads/2021/12/11.-Sector-en-Cifras-Resumen-Noviembre.pdf
Astorga, J. (2014). Aplicación de modelos de regresión lineal para determinar las armónicas de tensión y corriente. Ingeniería Energética, 234-241. Obtenido de http://scielo.sld.cu/pdf/rie/v35n3/rie08314.pdf
Baciu, R., Petre, B., y Simon, A. (2020). Insolvency Risk. Application of Altman Z-Score to the Auto Parts Sector in Romania. International Journal of Innovation and Economic Development, 6(1), 7-18. doi:10.18775/ijied.1849-7551-7020.2015.61.2001
Bermeo, D., y Armijos, J. (2021). Predicción de quiebra bajo el modelo Z2 Altman en empresas de construcción de edificios residenciales de la provincia del Azuay. Revista Economía y Política(33). doi:doi.org/10.25097/rep.n33.2021.03
Cámara de Industrias de Tungurahua. (24 de Febrero de 2016). 70% de la Industria Carrocera es Tungurahuense. Obtenido de https://camaradeindustriasdetungurahua.wordpress.com/2016/02/24/70-de-la-industria-carrocera-es-tungurahuense/
Caouette, J., Altman, E., y Narayanan, P. (1998). Managing Credit Risk: The Next Great Financial Challenge. New York: John Wiley and Sons, Inc.
Cepeda, J. (2020). Primer Laboratorio de Ensayos Estructurales Virtuales de Autobuses en Latinoamérica: Innovación y Acreditación. Revista Técnica Energía, 168-176. doi:10.37116/REVISTAENERGIA.V16.N2.2020.364
Cucaro, O. (2019). El modelo de predicción de quiebra Z-ScoreM para las empresas de fabricación listado italiano y Z-ScoreM para el italiano Industrial Company . Bari: Università degli Studi di Bari Aldo Moro.
Fierro, S., Guerrero, C., y Zurita, J. (2020). Estrategias empresariales de comercio exterior adaptadas para la industria automotriz de la Provincia de Tungurahua - Ecuador. Dominio de las Ciencias, 636-658. Obtenido de https://dominiodelasciencias.com/ojs/index.php/es/article/view/1187/1869
Fitó, Angels, Plana, D., y Llobe, J. (2018). Usefulness of Z scoring models in the early detection of financial problems in bankrupt Spanish companies. Intangible Capital, 162-170. doi:10.3926/ic.1108.
Hernández, M. (2014). Modelo financiero para la detección de quiebras con el uso de análisis discriminante múltiple. Revista de las Sedes Regionales, 15(32), 4-19. Obtenido de https://www.redalyc.org/pdf/666/66633023001.pdf
Mironiuc, M., y Taran, A. (2015). The Significance of Financial and Non-financial Information in Insolvency Risk Detection. Procedia Economics and Finance, 26, 750-756. doi:10.1016/S2212-5671(15)00834-5
Pérez, Á., y Martínez, P. (2015). Del sobreendeudamiento a la insolvencia: fases de crisis del deudor desde el derecho comparado europeo. Revista chilena de derecho, 93-121. doi:10.4067/S0718-34372015000100005
Uquillas, A., y Flores, F. (2020). Determinantes económicos y financieros de la quiebra bancaria: evidencia de los bancos privados del Ecuador e incidencia de la dolarización en la fragilidad financiera. Revista Brasileira de Gestão de Negócios, 22(4), 949-972. doi:10.7819/rbgn.v22i4.4080
Wang, Y. (2012). Z-score Model on Financial Crisis Early-Warning of Listed Real Estate Companies in China: a Financial Engineering Perspective. Systems Engineering Procedia, 153-157. doi:doi.org/10.1016/j.sepro.2011.11.021.